Call Us: (877) 920-7480

Archive for the Hydroforming Equipment Category

Automotive Metal Stamping and the Use of Polymers Grow

Automotive Metal Stamping and the Use of Polymers Grow

Last October we posted a piece looking at the potential for growth in the metal stamping industry, Though Struggles Exist, Hydroforming and Metal Stamping Thrive. One year later, we can say our prediction was correct.

Automotive metal stamping demand in commercial vehicles was valued at over $20 billion in 2015, according to a new Research and Markets report. Furthermore, demand for metal stamping in parts manufacturing and body work in commercial vehicles is expected to grow over the next eight years to reach over $112 billion by 2024.

American Hydroformers Employs Faro Edge Scan Arm HD

American Hydroformers Employs Faro Edge Scan Arm HD

At American Hydroformers we recently obtained and implemented a new Faro Edge Scan Arm HD that enables enhanced product development, inspection, and quality control. As a 3D scanning and probing device, the Faro Edge Scan Arm HD provides capabilities such as rapid prototyping, reverse engineering, 3D modeling and rapid point cloud collection and comparison. Ideal for scanning challenging materials, the Faro Edge Scan Arm HD also allows for contact and non-contact measurements.

  • Rapid Scanning Speed
  • High Definition Data
  • Up to 2,000 Points per Scan Line
  • Fast Frame Rates
  • Scan Challenging Materials
  • Highly Accurate and Repeatable
  • Contact & Non-Contact Measurements

Acquiring this new Faro Edge Scan Arm HD will allow American Hydroformers to probe virtually any part or tube and collect all of the data needed to reproduce it.  With up to 2,000 actual points per scan line, extreme resolution and high accuracy, we are able to reproduce even the most intricate parts and components. The actual setup of the scanning arm features an extra wide scan stripe as well as fast frame rates. This allows for increased productivity with the large coverage area and the reducing scanning times.

Autoform Hydro Simulation

In addition to the Faro Edge Scan Arm HD, our in-house capabilities also include the utilization of AutoForm Hydro simulation software as well as FEA simulations. Our team of engineers are trained and regularly updated on this software which provides a comprehensive understanding and analysis of the entire hydroforming process. By employing this software in-house and utilizing the simulation process, we supply our customers with rapid verification, shorter development time, and improved process reliability.

  • Easily Identify Forming Issues
  • Rapid Tool Design
  • Accurate Springback Simulation
  • Quality & Cost Improvements
  • Reduced Development Time
  • Improved Reliability
  • Lower Material & Production Costs

By enabling better price controls and reduced tooling expense, American Hydroformers provides a cost-effective source for part production. Unlike other metal forming techniques, hydroforming allows for increased part strength, lower part weight, and greater design flexibility, while also improving overall part quality. Contact American Hydroformers to see how you can reduce your tooling and part costs.

Hydroforming Aluminum Vs Stamped Steel

Hydroforming Aluminum Vs Stamped Steel

The rise of hydroforming as a viable manufacturing process which reduces the weight of resulting items is driving two distinct transitions in the industry. One of these is the switching from stamping to hydroforming, and the other is from steel to aluminum.

It is the desire to reduce item weight which is pushing forward the hydroforming of aluminum. Steel has long been the go-to metal for bike, automotive, marine, and aerospace components. However, the need for a more lightweight material arose when the industries began to feel a need for lighter components.

This is where aluminum came in. It is more lightweight than steel, resulting in the component having a 25%-50% reduction in overall weight as compared to the same component made from stamped steel. Once aluminum was able to easily be hydroformed, the transition began. Many manufacturers favor hydroforming over older means of metal forming such as stamping because hydroforming can deliver complex shapes and sizes, as well as requiring less finishing work. This is due to the fact that imperfections which would be present in the surface of the pressed metal when stamping are not present in components which were hydroformed.

The only downside manufacturers must take into consideration is the cost difference. Because aluminum is in such high demand across a wide range of industries, manufacturers could be looking at a cost anywhere from three to five times more than the same quantity of steel.

However, this is a small price to pay for the excellent product which comes from hydroforming aluminum. These superior components are ideal in industries where individual component weight is a variable.

If you would like to know more about hydroforming or friction stir welding, we invite you to visit us at our website. Additionally, you may contact us with any questions or comments about this article and more.

American Hydroformers, Inc. to be Featured on the Science Channel/Discovery Channel’s “How It’s Made” Television Program.

American Hydroformers, Inc. to be Featured on the Science Channel/Discovery Channel’s “How It’s Made” Television Program.

SUMMARY:

American Hydroformers is proud to announce that the company will be featured on a segment of the Science Channel/Discovery Channel’s popular “How It’s Made” television program. This detailed behind the scenes look at tube hydroforming chassis parts will be airing on the Science Channel in the US on Thursday, May 14th 2015 at 9:00pm (Eastern Time Zone).

 

Fort Wayne, IN–March 20, 2015-American Hydroformers, a leader in the tube hydroforming process, announced that the company and its hydroforming facilities will be featured on an upcoming episode of the Discovery Channels documentary television series “How It’s Made.” The segment will provide a compelling and comprehensive behind the scenes look at the tube hydroforming process. Viewers will be given the opportunity to see the hydroforming process for themselves as well as learn more information about the industry in general. The show will offer a step by step demonstration of the tube hydroforming process as well as an explanation of its uses and current industry examples. This informative segment will air on the Science Channel in the US on Thursday, May 14th 2015 at 9:00pm (Eastern Time Zone).

The Discovery Channels “How It’s Made” is a documentary television program that presents behind the scene perspective from factories and manufacturing facilities from around the world. The program demonstrates how raw materials and supplies are transformed into everyday objects. Shows range from typical household items to more complex manufacturing processes.

About American Hydroformers

Founded in 2003, American Hydroformers specializes in the tube hydroforming manufacturing process. Production capabilities include numerous metal forming techniques such as hydroforming, hydraulic press work, metal stamping, and tube forming. In addition to hydroformed components, American Hydroformers offers complete assembly level fabrication of automotive structures, robotic welding, and both industrial laser and plasma cutting.

To learn more about American Hydroformers products and services, visit their website at https://americanhydroformers.com/

How a New Tube Hydroformed Instrument Impacts the World of Optics and Photonics

How a New Tube Hydroformed Instrument Impacts the World of Optics and Photonics

Automotive and aerospace engineers (among others) have used tube hydroforming as a means to supplement inferior design techniques, by decreasing weight and increasing tensile and ductile strength, two things that had been sorely lacking in those industries for many years.

Tube hydroforming contributes to industries all around the globe, and lends an idle, albeit able hand in sculpting and shaping how those global communities think, brand, and progress into the future.

Recently, a new advancement in design was announced from an industry that has had little use for hydroforming up until the last few years: optics and photonics.

A newly designed, tube hydroformed instrument is helping to find sensitive measurements, and the scientists who use them.

From an article on optics and photonics on how the instrument works:

The instrument measure objects with apertures that range from 20 to 200mm or more, and consists of a laser diode, a conical mirror, and a miniature CCD or CMOS camera.

In the progressive world of aerospace design and mechanical engineering, seeing the truly smallest of smalls makes a huge impact on a nanoscale. Nanoscientists have for a long time been viewing that in which we are not able to see, and use powerful microscopes to do so.

For those in the aerospace industry, however, measuring the inner diameter of holes to establish the gauge of the bore by using two or three measured points is time-consuming and arduous.

So optics has stepped in to ease the burden. But even then, older optical sectioning methods are difficult to use for pipes measuring less than 100mm.

From the article on how the technique is applied to measurement and its functional principle:

The key component that we use in our technique is a ring beam device, which consists of a conical mirror and a laser diode. The fundamental principle that underlies our technique is based on optical sectioning, without the use of any contact-type stylus.

The instrument, whose shell is made by tube hydroforming, is rapidly helping those who already do a difficult job easier, by enabling the instrument “compatible with practical industrial applications,” as well as aiding in the future development of an even smaller probe that measure holes less than 10mm in diameter.

For more information on how we can help you, please contact us any time.

Aluminum Hydroforming Outperforming Steel Stamping

Aluminum Hydroforming Outperforming Steel Stamping

Hydroforming aluminum products has been around for the last few decades in some for or another. In the beginning, it was perfected to manufacture lightweight parts for the automotive industry as cars strayed away from heavier models and progressed towards more economical and efficient versions. But has since branched out to several other industries.

The advantages of aluminum hydroforming are numerous. Including weight reduction, vastly improved design flexibility, space reduction science, reduced jointing, less “downstream processing,” and a large impact on dimensional performance.

By replacing steel with aluminum, advanced hydroforming techniques could be applied to some of the most trusted and widely-used hydroforming methods. Aluminum sheeting, once added to the materials rotation, significantly impacted the stamping application, opening the door for advanced products and design. Then, as the automotive industry began to rapidly request more lightweight products, hydroforming adapted along side it.

As a basic rule that is typically agreed on by experts, and is used as an outline for aluminum hydroforming, there are three factors that contribute to the characteristics of aluminum extrusions.

They are:

Elongation: Most think that aluminum, being a lighter, more malleable material, would exhibit greater formable features than steel. This is contrary to the truth. In fact, steel is more formable than aluminum, but is obviously more weighty. Thus, the elongation factor is paramount to aluminum’s performance and usability over steel in addition to weight.

Materials: That is, alloys and tempers. Aluminum comes in a large variety of both of these characteristics, but the most widely sought after is a material that is strong and stable. Something that aluminum can have trouble with if close attention is not paid.

Shapes: A huge factor for aluminum’s growth in hydroforming is its ability to be formed into a large amount of shapes and sizes. Further, the cross sections that aluminum comes in out rivals steel in every regard (steel typically only comes in one: round).

Using aluminum in the hydroforming process has, and will continue to change how the technique is done. As major industries continue to evolve, so will how products are used, and how they benefit everyone involved.

For more information on how we can help you, please contact us any time.

Bicycles Benefiting from Tubular Hydroforming

Bicycles Benefiting from Tubular Hydroforming

Tubular hydroforming has left an indelible mark upon every industry in which it contacts. It runs the gambit of industries like it revolutionizes products: quick and with assured growth.

So while car manufacturers and appliance makers alike have benefited from both high pressure and low pressure tube hydroforming, perhaps the one that has seen much of the growth mentioned before is the biking industry, where lightweight bicycle frames rule the trail, and have changed the industry.

Here are 3 examples of modern bicycles that use tubular hydroforming frames.

1. Marin Indian Fire Trail

Beginning with one of the newest and best, the Marin Indian Fire Trail is a superb example of an off-road trail bike that has benefited from tube hydroforming. Described as a “workhorse privateer” by the manufacturer, the Marin Indian features outstanding qualities and a hardened frame engineered through tube hydroforming.

2. Vitus Escarpe 290

This new version which harkens back to older models can only be described as one thing: versatile. Using the most up-to-date 650b wheel size and a tube hydroformed frame and fork, the Vitus Escarpe feels chunky to the rider, a feature that helps when encountering particularly rough road situations.

3. Canyon Grand Canyon AL 29 5.9

The name of this bike alone should inspire one to feel encouraged to get out on the trail. But if that isn’t enough, consider its features. Light-weight hydroformed frame? Check. Hydroformed top and down tubes? Check. Modern and all-trail rated 650b tires? Check. The Canyon Grand seems to have it all, and with a sticker price that fits nicely into the equation, it could be on many cyclists lists.

We don’t just specialize in tube hydroforming, we also specialize in hydraulic press work, laser cutting, and metal stamping. For more information on how we can help you, please contact us with your questions or concerns.

Aerospace Sheet Hydroforming Cuts Manufacturing Time

Aerospace Sheet Hydroforming Cuts Manufacturing Time

A prominent leader in hydraulic press and automation sheet hydroforming systems named Beckwood Press Company, has produced a hydroforming press especially catered to aerospace industry parts supplier, Steelville Manufacturing Co, according to an article on digitaljournal.com which outlines the mutually beneficial deal between the two:

The bladder-forming press provides Steelville dramatically increased forming capability, and features a 24″ forming area and 5,000 PSI of forming pressure.

Steelville Manufacturing Co. (located in Steelville, Missouri and formed in 1959), is a parts supplier for many large US aerospace companies, including leaders in the industry like Boeing and Lockheed Martin, among others.

They collaborated with Beckwood Press Co. after the two decided that the speed in which their internal forming capability and overall parts production efficiency was functioning, could easily be increased through the addition of Triform Sheet Hydroforming press.

Triform Sheet Hydroforming equipment provides even and accurate pressure, which greatly reduces production time, and all but eliminates manual hand-work.

Not mention next to no maintenance requirements, which mainly consists of a bladder change process that takes roughly an hour to complete. And because of the size and design of the Triform Sheet Press, the space it occupies on the production floor is minimal.

Before Beckwood and Steeleville collaborated together, Steelville was mainly press brake forming their parts. But since March, when the Triform 24-5BD began operation at their facility, Steelville has already seen a positive impact on all manufacturing operations.

According to Joseph Dust, one of Steelville Manufacturing Co.’s chief engineers who was in charge of the Triform press integration, they had been manufacturing parts for a very long time, which they soon came to find out were almost tailor-made for the Triform press.

The addition of the [press] definitely makes forming parts much easier, [and] the overall time required to make our form tools has been cut in half.

Adding that, just over the first few weeks the Triform press was in operation, they had already produced well over 10 parts, all with reduced manual labor and costs. A timeframe that would have typically seen a part production count of next to 5, or even less.

For additional information on the Triform Sheet Hydroforming Press, click here.

For more details on the collaboration between the two companies, click here.

For more information on how American Hydroformers can help you, to request a free quote, or for related information on how the hydroforming process can revolutionize how you do business, please contact us any time.

Three Applications for Tube Hydroforming Aluminum

Three Applications for Tube Hydroforming Aluminum

While most people are only vaguely aware of the concept of hydroforming and its many benefits, even fewer are well-versed in the specifics of tube hydroforming aluminum. The unfortunate truth is that although they often benefit from the results, most people are unaware of how this process actually influences their daily lives.

Three Applications for Aluminum Hydroforming:

  1. Mountain Bikes. We list this one first because it is probably one of the better known applications. Thanks to recent developments in aluminum hydroforming, mountain bike frames are now more sleek and lightweight than ever.
  2. Automotive Body Panels. Within the last few years, the overall emphasis on energy consumption and the desire on the part of auto makers to produce cars that are fuel-efficient have together led manufacturers to desire more lightweight designs in order to minimize fuel consumption. As early as 2012, it was suggested that sheet hydroforming techniques could be used to produce aluminum body panels, which would significantly lighten vehicle weight. We look forward to seeing how these ideas take shape in the days to come.
  3. Medical Device Manufacturing. Thanks to hydroforming technology, medical devices made from aluminium, titanium, stainless steel, and other composites can now be produced with lower cost and higher product quality than ever before. According to a recent article in Today’s Medical Developments, “Sheet hydroforming and the accompanying technologies are helping medical device manufactures prepare for the future. With these technologies, device manufacturers can stay ahead of government regulations, implement a leaner manufacturing environment, and bring products to market faster while delivering higher profit margins.”

Although hydroforming techniques mostly center on carbon steel and stainless steel, we look forward to seeing more applications of tube hydroforming aluminum in the days to come. For more information on this, or anything else, please feel free to contact us.

American Hydroformers provides metal fabricating solutions using the most advanced hydroforming processes available. Our manufacturing expertise includes hydroforming, hydraulic press work, laser cutting and various other metal forming techniques.

Difference Between Research and Development Dies and Production Dies

Difference Between Research and Development Dies and Production Dies

As has been noted previously on this blog, there is a standard protocol followed for most hydroforming procedures:

  • First a raw tube is loaded into hydroforming dies.
  • Next, the hydroforming press closes.
  • The sealing rods engage the part, seal the ends and fill it with water pressure inside the part increases.
  • The sealing rods push the tube into the die (endfeed) and the internal pressure is ramped to its maximum value.
  • The hydroformed part takes on the shape of the die.
  • Finally, the hydroformed part is removed and ready for use.

As you can see, dies are a critical component to hydroforming. Without them, the process would be impossible. What you may not know, however, is that not all dyes are created equal. In fact, there are distinct differences between dies intended for research and development and those intended to be used in production.

Knowing Your Dies: the Difference Between Research and Development Dies and Production Dies: 

Research and Development Dies

Typically made out of a softer material, research and development dies enable the die manufacturer to customize the die quickly and allow researchers to get directly into the die in-house. They can then try it out for themselves, allowing for custom machining to the die in-house to get the part to fit their purposes perfectly.

Production Dies

High production dies are typically made out of strong, hardened materials so that the dies can be used to manufacture hundreds of thousands of parts. They are send directly to manufacturers who are looking to produce high-quality parts to be used in cars, bicycles, and so forth.

Understanding the difference between research and development dies and production dies will help you to navigate the hydroforming world and all of its intricacies with greater ease of understanding.

Questions? Comments? For more information on this or anything else on our website, please feel free to contact us.