Archive for the Welding Category

The Budding New Technique of Friction Stir Welding

The Budding New Technique of Friction Stir Welding

A relatively young technique in the field of welding, friction stir welding was invented then scientifically proven as a viable method in December of 1991. By definition it is a ‘solid-state joining process,’ meaning that the material being used for welding is not melted. This process employs the use of a third body tool to join together the two facing surfaces.

The process starts with heat being generated between the friction stir welding tool and material, which leads to a softened region. The tool then mechanically mixes the metals between the two pieces at the place of the joint. The softened metal can then be joined by pressure, supplied by the welding tool. This process is described as being much like joining pieces of clay or dough. Friction stir welding is excellent for items requiring superior hold strength without the need of a post-weld heat treatment.

There are several advantages that friction stir welding has been observed to have over traditional fusion welding. Some of these include;

  • Free range operation positions (horizontal, vertical, etc.) because there is no weld pool.
  • No consumables.
  • Easily automated on simple milling machines due to lower set up costs and less training.
  • Improved safety due to the absence of toxic fumes or the spatter of molten welding materials.
  • Reduced impact on the environment.

As with the advantages, a few disadvantages also go along with the friction stir welding process. A few examples of the disadvantages are;

  • An exit hole is left in the metal when the tool is withdrawn.
  • Less flexibility than whats found in manual and arch welding processes.
  • Often slower than fusion welding techniques, however this can be offset if a smaller number of welding passes are required.

Despite being a relatively new process, friction stir welding has already made a place for itself in several industries. These include automotive, offshore and ship building, aerospace, railways, personal computers, and various electronics. The future for this process is promising, paving a way for itself to maybe one day surpass traditional welding methods as the go to technique. If you would like to know more about friction stir welding, or other fabrication processes such as hydroforming, feel free to contact us at our website.

Tube Hydroforming is Beneficial

Tube Hydroforming is Beneficial

First referenced from an early 1900s process, tube hydroforming is constantly improving parts and workplace functionality. Tube hydroforming is a metal forming process where pressurized fluids form the workpiece into a shape. This technique is only now really starting to take off, though the concept of tube hydroforming has been around a while.

Until the 1980s, there was no way to economically build a tubular part with dimensional stability, design flexibility, and hole-making ability, so tubes had to be welded together from stamped parts. When tube hydroforming was fully realized and established, it satisfied a long-awaited need in the industry, which explains why tube hydroforming has gained rapid acceptance throughout the USA.

Tube hydroforming offers many benefits as compared to conventional forming techniques. The ability for deeper draws and closer control of perimeters increases part stability and prevents wrinkles and tearing. Tube hydorforming creates a part that is stiffer, less likely to have defects, and is resistant to buckling. Hydroforming replaces the stamping assemblies which are expensive and need large assembly areas and a lot of welding. The flow of the process will increase because less die is used, since the process is metal on fluid shaping and not metal on metal. Tool costs will be reduced by at least 40% because the fluid replaces half of the tooling that would be needed with welding and stamping techniques.

New capabilities for hydroforming are being found every day, as engineers learn where and how to apply tube hydroforming for best use. As a result, hydroforming is used to make more and more parts. About 15 years ago, 10% of steel in North American vehicles was tubular, while today the percentage has risen to over 16%. Tube hydroforming is steadily gaining in popularity because it lessens capital costs, reduces the number of parts needed, increases and improves structural strength of product, and offers flexibility and design quality that just does not come with welding and stamping techniques. A number of automobile industries have switched from stamping and welding to hydroforming because it is more cost-effective and creates more high-consistency parts.

For more information on tube hydroforming and hydroforming services, please contact us.