Archive for the Hydroforming Industry Category

Improving Bicycles with Tube Hydroforming

Improving Bicycles with Tube Hydroforming

What is tube hydroforming? It is a metal shaping method that is replacing stamping and pressing because of its quality products and cost-effectiveness. Tube hydroforming is used to create countless products: automotive exhaust components, sink faucets, hand rails, rifle scopes, sporting goods, and bicycle frame components. More bicycles than cars are sold in the USA every year. Last year, approximately 19 million bikes were purchased. When looking for a bike, people pay close attention to the weight and stability of the bike’s frame, because all these factors make the difference between a heavy, awkward bike and one that is light and easy to maneuver.

The tube hydroforming process offers the best features of an aluminum bicycle frame. Often when a manufacturer makes a bike frame, they press or stamp the components for the frame, but the problem is that this creates weak points that the eye cannot see. Tube hydroforming, however, creates a sturdy frame, because the hydraulic fluid is pumped into the frame at high pressure, creating evenly molded aluminum without any weak spots. The process produces interesting shapes and a thickness in the material, leaving a stronger and lighter tube to be used in the frame system.

Not only are manufacturers improving bicycles with tube hydroforming, but it also saves the manufacturers money, thus reducing bike costs for consumers. The manufacturer saves a lot of funds on tools that would have been needed for stamping and pressing techniques. Hydroforming is also done at room temperature, and the die used to cast material can be used over again, saving a lot of money on energy and material costs.

Hydroforming is a reliable and trusted process. Consumers have started specifically looking for hydro-formed bicycle frames because of the frames’ sturdiness, light weight, and pleasing appearance.

For more information about tube hydroforming, our services, and experience, please contact us.

Tube Hydroforming is Beneficial

Tube Hydroforming is Beneficial

First referenced from an early 1900s process, tube hydroforming is constantly improving parts and workplace functionality. Tube hydroforming is a metal forming process where pressurized fluids form the workpiece into a shape. This technique is only now really starting to take off, though the concept of tube hydroforming has been around a while.

Until the 1980s, there was no way to economically build a tubular part with dimensional stability, design flexibility, and hole-making ability, so tubes had to be welded together from stamped parts. When tube hydroforming was fully realized and established, it satisfied a long-awaited need in the industry, which explains why tube hydroforming has gained rapid acceptance throughout the USA.

Tube hydroforming offers many benefits as compared to conventional forming techniques. The ability for deeper draws and closer control of perimeters increases part stability and prevents wrinkles and tearing. Tube hydorforming creates a part that is stiffer, less likely to have defects, and is resistant to buckling. Hydroforming replaces the stamping assemblies which are expensive and need large assembly areas and a lot of welding. The flow of the process will increase because less die is used, since the process is metal on fluid shaping and not metal on metal. Tool costs will be reduced by at least 40% because the fluid replaces half of the tooling that would be needed with welding and stamping techniques.

New capabilities for hydroforming are being found every day, as engineers learn where and how to apply tube hydroforming for best use. As a result, hydroforming is used to make more and more parts. About 15 years ago, 10% of steel in North American vehicles was tubular, while today the percentage has risen to over 16%. Tube hydroforming is steadily gaining in popularity because it lessens capital costs, reduces the number of parts needed, increases and improves structural strength of product, and offers flexibility and design quality that just does not come with welding and stamping techniques. A number of automobile industries have switched from stamping and welding to hydroforming because it is more cost-effective and creates more high-consistency parts.

For more information on tube hydroforming and hydroforming services, please contact us.

Hydroforming History

Hydroforming History

Recently, the Auto Tech Review acknowledged that without constant evolution in hydroform technology, the advancements enjoyed in the automotive world today just would not be possible:

The demand for weight reduction in modern vehicle construction has led to an increase in the application of hydroforming processes for the manufacture of automotive lightweight components. Hydroforming is a promising technology that has greater potential for automotive applications. (Auto Tech Review)

So when did the hydroforming history begin, let’s take a look.

Although it would be difficult to imagine where today’s automotive industry would be without hydroform, it must be remembered that the technique is relatively new. Based on a 1950s patent held by Fred Leuthesser, Jr. and John Fox of the Schaible Company of Cincinnati, Ohio, the process first came into its element in the 1970s when buoyed by aid of computer technology.

Originally used to produce stronger kitchen spouts, the process was eventually employed to produce bicycle parts, piping joints, as well as automotive components. Throughout the 80s and 90s, the process was adapted to produce even larger structural parts.

By the early years of the 21st century, the process of hydroforming had become well-known, and its application in the automotive world was widely acknowledged.

According to a Japanese study published in 2004 in the Nipon Steel Technical Report, the advantages to using hydroform over the traditional press forming had already become apparent and included the following:

  • Cost reduction
  • Weight reduction
  • Improvement of fatigue properties
  • Improvement of component strength
  • Simplification of work processes
  • Improvement of yield
  • Reduction of spring back
  • Capability of large deformation

To find out how the development of hydroforming technology can aid in the production of your product, please feel free to contact us.

Tubular Hydroforming

Tubular Hydroforming

Most of us have never considered the world of hydroforming or tubular hydroforming. The components made from these methods have permeated a great many areas of our lives from the vehicles we drive to the bikes we ride. Have you ever stopped to consider all the possibly applications of tube forming? Most of us think of automotive or, perhaps, architectural applications for hydroformed tubes. However, you’re just as likely to find hydroformed tubes in anything you can think of that you’d need a high strength, light weight tube for. Here we’ll take a look at the world of fitness to see where you’ll find hyrdroformed tubes.

In the world of fitness, you can use tube forming to make the following parts:

  • Tubular frame rails
  • Levers
  • Brackets
  • Shafts
  • Spacers
  • Pedals
  • Clamps

Many of these parts are obvious. They are the large and small hollow tubes that make up the structure of the machine. You’ll find the frame rails on the sides so you don’t fall of the machine, levers in the braking mechanisms of bikes. Around the gears and wheels you’ll find shafts and spacers. Clamps are usually found around the frame to keep the wires for the electronics safely tucked away.

However, these aren’t the only parts that are made for fitness machines; these are just the ones that use tube forming processes. In a similar process called sheet hydroforming the following parts for fitness machines can be made:

  • Leverlers
  • Flywheels
  • Mounting plates

While all of these parts are standardised for various types of machines, the beauty of tube forming for components is that they can be made-to-order for a custom design! So, if you want to start fix or design your own fitness gear, all you have to do is get the specifications for your design and leave the rest up to us.

Accuracy in tube hydroforming

Accuracy in tube hydroforming

As the demands for lightweight construction and precision grow, tube hydroforming is becoming increasingly popular. Hydroforming is used in a wide variety of applications from industry parts to bikes because the process can create parts that have desired properties, such as complex geometrical shape and light weight. Even the new Corvette design employs hydroformed tubes to keep the car lightweight. With the wide variety of complex shapes that tube hydroforming processes can be used for, you may wonder how accurate the end product is. Well, let’s take a look at some of the variables that go into hydroforming.

First, you start with a tube or sheet of steel that is placed into a cavity, and water at high pressure pushes the steel into the shape of the cavity. The factors that can affect this are:

  • Change in outer forces

This is looking at the pressure considerations of the liquid in the die cavity, which are between 30 to 150 MPa in comparison to the

  • Material yield strength
  • Inner radius of the sharpest cross sectional.
  • Material wall thickness.

When the pressures are correctly balanced, the deformation of the metal will have an optimal flow and a minimal wall thickening.

  • Change in friction

For optimal flow of the metal, friction should not be too much or too little. With too much friction, the strain of the metal as it bends could cause it to crack and break. Too little friction could me a malformed product.

  • Change in material behavior

During deformation, metals undergo stress and strain. With optimal heat and pressure, the metal flow will be such that the metal deforms smoothly into the cavity it’s being molded to.

The changes in these factors will determine optimisation of the flow of the metal as it forms to the cavity. However, skilled technicians can minimize the thickening of the walls, which increases the accuracy and meets tolerances for your project. It is possible to manufacture parts that can fulfil demands with tolerances of 0.5mm for a geometrical shape up to 500mm.

Part Analysis

Ready to get your project under way? Contact us to work with our skilled technicians for your next project.

Hydroforming for Performance in the Automotive Industry

Hydroforming for Performance in the Automotive Industry

Automakers face a number of challenges in providing consumers with vehicles that are safe, fuel efficient and reliable. One way they are achieving these goals is with the use of hydroformed automotive parts. Hydroforming is a metal fabrication process that uses high pressurized fluid and a specialized type of die molding that produces parts which are lightweight, cost-effective and although thinner, have increased strength and structural integrity.

BMW has been using hydroformed parts in their high performance vehicles for several years. The BMW M3 features hydroformed exhaust tubes, for instance. Ford utilized hydroformed steel tubes in the B-pillars and a hydroformed roof rail in the 2013 Ford Fusion. The structural superiority as well as the lighter weight and reduced costs are key reasons that automakers have begun to incorporate hydroformed parts into their newer models.

Weight is increasingly a concern for both consumers and automakers due to EPA regulations regarding fuel efficiency. A lighter vehicle enjoys improved MPG, in fact, according to the EPA, every 100 pounds of extra weight in a vehicle reduces the MPG by 2 percent.

But perhaps more important than weight and MPG, is safety. Hydroformed parts have a higher stiffness to weight ratio and increased strength. The absence of welding joints means these parts have a greater ability to absorb crash energy. This means vehicles have greater crash worthiness which translates into improved safety for the occupants of the vehicle in case of a crash.

For improved safety and structural strength as well as reduced weight and overall production costs, hydroforming is a perfect solution for the performance automotive industry.

We are American Hydroformers and we specialize in the manufacture of hydroformed parts. Contact us for information on hydroforming solutions for your automotive parts needs.

Hydroforming into the Next Generation

Hydroforming into the Next Generation

Technology born in the 1940s has evolved through the decades to become the most desired manufacturing method for widely varied industries. From the shape of a saxophone, the tubes in bicycle frames, high strength automobile components, and even the new stainless steel sink installed your kitchen, hydroforming is a cost effective way to shape aluminum, brass, stainless steel, copper, alloys, and even carbon, into high strength structural components with tight tolerances.

When hydroforming, a large press is used with a punch similar to male die element in matched die forming. What would be the female element is actually a bladder full of hydraulic fluid at extreme pressures, and between the two is a metal blank. The punch presses into the bladder, shaping the metal into the desired form while leaving the surface smooth. Once pressed, the pressure is released from the bladder and the finished part is removed.

Here are some of the advantages to hydroforming:

  • Tooling costs are lower with hydroforming because the female side is a reusable bladder, only the male die and a holding ring are unique to each job.
  • Faster prototyping is possible. Various materials and material thicknesses can be used with the same tooling setup. This brings in your total project time thereby reducing development costs.
  • Complex shapes can be achieved with a single press cycle where traditional matched die forming would require multiple press cycles.
  • Hydroforming achieves outstanding surface finishes. The soft bladder leaves no lines, scratches, or surface blemishes, which would otherwise require extra time to polish out of the finished product.

At American Hydroformers, we have the expertise and the equipment to provide you with the next generation of formed metal components. From the automotive industry to the appliance business, contact our experts for more information.

Hydroforming Rides New Wave of Interest

Hydroforming Rides New Wave of Interest

American Hydroformers has slowly built up a niche in the tube hydroforming industry. With nearly 10 years in business, American Hydroformers is ready with expertise, equipment and capacity. Hydroformed components will never replace or completely remove stamped and welded assemblies, however the hydroforming process can delvier a superior component more cost effectively than conventional processes.  When looking at the feasibility of having a part or component hydroformed, AHI helps companies look at the technological side of the process to make sure the component will be stronger and lighter, however the business side must be addressed to make sure the component can be made faster or at a lower cost.  American Hydroformers can hydroform high-strength, low alloy materials, high yield strength materials up to 650,000 PSI dual phase steels and so on.

To read the full story about American Hydroformers in The Tube and Pipe Journal please contact us.

American Hydroformers was recently spotlighted on the cover of The Tube and Pipe Journal.  If you missed the October/November copy let us know and we’ll get you the full story.

Hydroforming is a metal fabricating and forming process which allows the shaping of metals such as steel, stainless steel, copper, aluminum, and brass. This process is a cost-effective and specialized type of die molding that utilizes highly pressurized fluid to form metal. Generally there are two classifications used to describe hydroforming, sheet hydroforming and tube hydroforming. Sheet hydroforming uses one die and a sheet of metal; the blank sheet is driven into the die by high pressure water on one side of the sheet forming the desired shape. Tube hydroforming is the expansion of metal tubes into a shape using two die halves, which contain the raw tube. Hydroforming is used to replace the older process of stamping two part halves and welding them together. It is also used to make parts both more efficiently by eliminating welding as well as creating complex shapes and contours. Parts created in this method have a number of manufacturing benefits including seamless bonding, increased part strength, and the ability to maintain high-quality surfaces for finishing purposes.  

 

Hydroforming Origins

We’re often asked when and where hydroforming started and how it came to be what it is today. With its potential for cost reduction and its obvious design advantages, it would seem that absolutely everything would be shifting to the hydroforming process.

Surprisingly, the hydroforming process actually started in the 1950’s and was used for producing kitchen spouts. At least in part, the process was developed to allow for easier metal finishing, but also offered the strength and design advantages we often speak of today.

It’s generally assumed that hydroforming is now best known for its application in the automotive sector, but it’s certainly not limited to that. Hydroforming allows complex parts to be build with less tooling, reduces weight by requiring less material, and offers the ultimate sky is the limit approach to design. Automobile designers everywhere have discovered that new hydroformed structures are a lighter and stronger alternative to traditional stamped and welded assemblies. American Hydroformers, Inc. (AHI) can meet the needs of customers in the automotive industry for hydroformed catalytic converter cones and exhaust components, crash tips, cross members, engine cradles, frame rails, header and exhaust manifolds, instrument panel beams, radiator and roof supports, trailing suspension arms and more.

For many years, high performance and race car builders have utilized tubular frame construction for its strength and lightweight nature. With the latest federal mandates for mileage and crash worthiness, hydroformed frames are an ideal solution.

AHI offers automotive hydroforming, diesel exhaust hydroforming, as well as hydroforming for plumbing, recreation vehicles, appliances and other unique applications.

Unlike other metal forming techniques, hydroforming allows for increased part strength, lower part weight, and greater design flexibility, while also improving overall part quality. Contact us to see how you can reduce your tooling and part costs.